Microsoft ends support for Internet Explorer on June 16, 2022.
We recommend using one of the browsers listed below.
Please contact your browser provider for download and installation instructions.
April 6, 2018
Nippon Telegraph and Telephone Corporation
Tohoku University
Nippon Telegraph and Telephone Corporation (NTT) (Head Office, Chiyoda-ku, Tokyo; Hiroo Unoura, President and CEO) and Tohoku University (Head Office, Sendai, Miyagi, Hideo Ohno, University President) have developed an artificial acoustic structure called phononic crystal and demonstrated pulse compression and amplification by controlling the "flow" of ultrasound wave.
The ability to engineer an ultrasound waveform can be applied to signal processing devices such as radio-frequency acoustic filters, which are widely used in mobile communications systems. This holds promise for developing highly integrated and functional acoustic systems.
The results were published in "Nature Communications" on April 6, 2018.
This work was partially supported by a MEXT Grant-in-Aid for Scientific Research on Innovative Areas "Science of hybrid quantum systems" (Grand No. JP15H05869 and JP15K21727) and by the Tohoku University "Interdepartmental Doctoral Degree Program for Multi-dimensional Materials Science Leaders".
A tuning fork is a well-known acoustic resonator which vibrates at specific frequency. Similarly, micro-electromechanical systems (MEMS)*1 are acoustic resonators that vibrate at ultrasound frequencies. This phenomenon is exploited in various MEMS such as oscillators and surface acoustic wave filters*2 which can be used for radio-frequency signal processing. We have made an artificial acoustic material called "phononic crystal" (PnC)*3 using this MEMS technology and investigated the possibility of using it to manipulate ultrasound waves*4. The PnC allows us to engineer the dispersion*5 relation in ultrasound waves, making it possible to tune their traveling speed and wavelength, which is difficult in the conventional MEMS.
The PnC used in this study consists of a membrane-based waveguide (WG) structure that can guide tiny ultrasound vibrations as shown in Fig. 1. Applying an electric voltage to an electrode located at the end of the WG locally induces the vibrations due to the piezoelectric effect*6. By measuring the vibration transmission, the spectral dispersion of group velocity*7, namely group velocity dispersion (GVD)*5, can be experimentally investigated, where the velocity differs in frequency as shown in Fig. 2. Thus, the GVD allows us to broaden and compress ultrasound wavepackets by injecting frequency-chirped vibrations from the WG as shown in Fig. 3. This novel technology enables the compression factor, location, and timing to be precisely controlled, which holds promise for developing highly integrated and functional MEMS. This is the first demonstration of ultrasound wave compression using the PnC architecture.
The results reveal the possibility of the acoustic wavepacket compression using the GVD in the PnC device. By combining this dispersion engineering with the nonlinear elastic effect in the PnC, we can develop advanced techniques for engineering waveforms such as solitons*8. Moreover, we will be able to fabricate an ultrahigh-frequency PnC device, which could open up the possibility of putting this technique for MEMS signal-processing applications into practical use.
A PnC is an artificial acoustic material with a periodic elastic structure. Engineering the structure enables us to modulate the band structure and GVD. We have developed a novel PnC consisting of a suspended-membrane WG with periodically arrayed air holes as shown in Fig. 1. This device is made from piezoelectric compound semiconductors (GaAs, AlGaAs), that allow ultrasound vibrations to be electrically excited by just applying an electric voltage to an electrode located on the WG. Using this on-chip excitation technique, we investigated the ultrasound transmission property and GVD.
The use of the GVD in the PnC device has enabled us to broaden and compress ultrasound wavepackets. By adjusting the sign and value of the frequency-chirp parameter of the input signal and the GVD coefficient of the device, these effects are available at the desired location and timing. Experimentally, the wavepacket compression realizes one order of magnitude amplification in peak power as shown in Fig. 2. The maximum compression in this study was limited by the temporal resolution of the measurement set-up, so stronger compression and amplification effects can be observed by optimizing the set-up in the future. Note that the experimental results are in good agreement with the theoretical ones given by the nonlinear Schrödinger equation, which offers the possibility of precise waveform engineering. Moreover, in the experiment, we also investigated the nonlinear interaction between different frequency vibrations and evaluated the intrinsic nonlinearity in the PnC WG. The results reveal the possibility of generating nonlinear phononic phenomena such as solitons in this device.
Figure 1 Phononic crystal waveguideM. Kurosu, D. Hatanaka, K. Onomitsu and H. Yamaguchi
"On-chip temporal focusing of elastic waves in a phononic crystal waveguide"
Nature Communications (2018).
Contact information
Nippon Telegraph and Telephone Corporation
Science and Core Technology Laboratory Group, Public Relations
science_coretech-pr-ml@hco.ntt.co.jp
Graduate School of Science Tohoku University
Ryo Takahashi
sci-pr@mail.sci.tohoku.ac.jp
Information is current as of the date of issue of the individual press release.
Please be advised that information may be outdated after that point.
WEB media that thinks about the future with NTT