Microsoft ends support for Internet Explorer on June 16, 2022.
We recommend using one of the browsers listed below.
Please contact your browser provider for download and installation instructions.
July 5, 2016
Nippon Telegraph and Telephone Corp. (NTT) (Head Office, Chiyoda-ku, Tokyo; Hiroo Unoura, President and CEO) and the National Physical Laboratory (NPL) in UK have performed high-accuracy measurements of a single-electron transfer device comprising silicon transistors*1 and demonstrated single-electron transfer at 1 GHz (109 Hz) with a world-record accuracy in the gigahertz regime: an error rate*2 of less than 9.2 × 10-7.
Since high-accuracy single-electron transfer leads to a current with high accuracy, our result is an important step toward the realization of a current standard*3, which corresponds to a ruler to measure electric current. A current standard based on the single-electron transfer would be one that could most directly realize the ampere (the base unit of electric current), which, according to a recent proposal, should be redefined. Furthermore, it could be used for the quantum metrology triangle*4 experiments, which check the consistency of fundamental physical constants. This would significantly contribute to the field of the fundamental physics.
This work will be published in the online version of "Applied Physics Letters" on the 5th of July, 2016 (EST).
It was proposed in 2011 that the International System of Units (SI)*5 be redefined using invariants of nature such as the Planck constant h and the elementary charge e (Fig. 1). In the redefinition, the definition of the ampere (the base unit of electric current) will be changed. The new ampere will be set by generating a current eƒ (ƒ: frequency) using a current standard, with the numerical value of e fixed (e is now a measured value). Since a single-electron transfer device, which can convey electrons one by one using clock control, connects e to the ampere (Fig. 1), it is attracting much attention as a device that could be used for the most direct current standard. Furthermore, if a high-accuracy current standard based on single-electron transfer is realized, it could be used for the quantum metrology triangle experiments (Fig. 1). Since such experiments will enable us to check the consistency of fundamental physical constants, they will contribute to the field of fundamental physics.
A practical current standard must operate at high speed, corresponding to a high current level, with high accuracy. Toward this goal, NTT Basic Research Laboratories have been studying single-electron transfer devices using silicon transistors. Silicon nanofabrication techniques accumulated over time have succeeded in greatly reducing the size of silicon devices. This is important for achieving high-accuracy operation suitable for the current standard. To show the expected high-accuracy operation, we needed a detailed evaluation of the transfer accuracy, but the measurement condition had not been optimized. In addition, gallium arsenide-based single-electron transfer devices, in which high accuracy was previously reported, have not been able to operate at more than 1 GHz without a significant loss of accuracy.
We performed high-accuracy measurements of a current generate using a silicon single-electron transfer device (Fig. 2) comprising silicon transistors at 1 GHz and achieved a world-record accuracy in the gigahertz regime: a transfer error rate of less than 9.2 × 10-7 (Fig. 3). The silicon single-electron transfer device was fabricated by NTT, and the measurements were performed by using high-accuracy current measurement system (Figs. 4, 5) at National Physical Laboratory (NPL) in UK. The value is about two orders magnitude better than that obtained from conventional measurements of silicon single-electron transfer devices. In addition, we performed a similar experiment at 2 GHz, which shows an error rate of about 3 × 10-6. This indicates that our device breaks the 1-GHz barrier and is suitable for high-speed operation.
1.Device structure | We fabricated silicon transistors with a double-layer gate structure (Fig. 2). The lower layer comprises two fine gate electrodes (entrance gate G1 and exit gate G2) formed on a silicon nanowire. The upper layer is a large gate electrode, which covers the entire region of the silicon nanowire. |
---|---|
2.Operating principle | By applying negative voltages to the entrance and exit gates, two electron potential barriers are formed in the silicon nanowire, leading to a fine region (single-electron island*6) between the two barriers (Fig. 2). In addition, by applying a high frequency signal with frequency ƒ to the entrance gate, a single electron is captured by the island from the left source lead and eventually ejected to the right drain lead. When one electron is transferred in each cycle, the output current is eƒ. Since the height and width of the entrance barrier are largely modulated to transfer electrons, this type of device is referred to as a tunable-barrier single-electron transfer device. |
3.High-speed characteristics | Figure 6 shows transfer current measured with a conventional measurement system (Fig. 4). The horizontal axis is voltage applied to the exit gate (VExit), which is here used to tune the potential of the single-electron island. We observe a current plateau*7 at up to 6.5 GHz. The 6.5-GHz operation is the fastest operation to date, although the accuracy is worse than that at 1 and 2 GHz. |
4.Accuracy evaluation | Figure 3 shows results of the high-accuracy current measurement at 1 GHz, performed using the high-accuracy measurement system (see Fig. 4 and Technical Features 3-2) at NPL. The current plateau in Fig. 3 corresponds to an expansion of the flattest region of the characteristics at 1 GHz in Fig. 6. The current measurements at the current plateau proves that the transfer current with an uncertainty*8 of 9.2 × 10-7 matches eƒ. This indicates that the operation has high accuracy; that is, the transfer error rate is less than 9.2 × 10-7. In addition, since this value is determined by the uncertainty of the measurement system, we expect that the actual transfer error rate is much lower (theoretically, it is less than 10-8). |
NTT Basic Research Laboratories have been accumulating techniques for fabricating nanometer-scale silicon transistors at a wafer level for a long time. We can fabricate devices that have the double-layer gate structure and small single-electron island with high yield. With decreasing size of the single-electron island, the electron charging energy determining the single-electron transfer accuracy becomes large, leading to high accuracy operation. The high-accuracy operation in this study was achieved by making confinement region by applying gate voltages to a silicon wire with a diameter on the order of 10 nm.
Commercial current meters have a measurement uncertainty of about 10-4 at best. To achieve higher accuracy measurements, we compared the single-electron transfer current with a reference current generated using a high-accuracy 1-GΩ standard resistor (Figs. 4, 5). Since the standard resistor is precisely calibrated, we can perform high-accuracy measurements with an uncertainty of about 10-6. By using this method, we demonstrated high-accuracy operation, which was difficult to achieve with the conventional measurement systems we had used. In addition, measurements of devices fabricated using different materials at different research institutes have also been performed. Taken together, these results and ours indicate that a tunable-barrier single-electron transfer device has universality*9 with a level of 10-6.
We aim to demonstrate operation at higher accuracy toward the realization of a practical current standard. One approach is to improve the high-accuracy measurement system. The next target is a high-accuracy measurement with an uncertainty of 1 × 10-7 (in collaboration with the quantum current standard project in Europe). Another approach is to count the number of transferred electrons using a charge detector with single-electron resolution. This could prove an error rate of less than 1 × 10-8, which is the target value of the current standard (Fig. 7). In addition, we will investigate why the error rate increases at the 6.5-GHz operation. When this work is successfully completed, we aim to perform the quantum metrology triangle experiments with high precision and to develop devices that directly realize the new ampere.
G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, A. Fujiwara
"Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 107"
Applied Physics Letters (2016).
NPL also issues a press release about this work.
http://www.npl.co.uk/news/record-speed-and-accuracy-achieved-with-single-electron-pumps
Quantum Hall resistance standard | When a two-dimensional electron system is under a low temperature and a high magnetic field, Hall resistances are quantized due to the quantum Hall effect. The quantum Hall resistance standard is a standard that uses the value of the quantized Hall resistance, which is the product of the von Klitzing constant (RK=h/e2) and the reciprocal of the integer number. |
---|---|
Josephson voltage standard | When a high-frequency signal with frequency ƒ is applied to a structure having an insulator sandwiched by superconductors, the output voltages are quantized due to the alternating-current Josephson effect. The Josephson voltage standard is a standard that uses the value of the quantized voltage, which is the integer multiple of the product of ƒ and the reciprocal of the Josephson constant (KJ=2e/h). |
Attachment
Contact information
Nippon Telegraph and Telephone Corporation
Science and Core Technology Laboratory Group, Public Relations
a-info@lab.ntt.co.jp
Information is current as of the date of issue of the individual press release.
Please be advised that information may be outdated after that point.
WEB media that thinks about the future with NTT